6 research outputs found

    Early Propagation and Imbalanced Routing, How to Diminish in FPGAs

    Get PDF
    This work deals with DPA-resistant logic styles, i.e., cell-level countermeasures against power analysis attacks that are known as a serious threat to cryptographic devices. Early propagation and imbalanced routings are amongst the well-known issues of such countermeasures, that - if not considered during the design process - can cause the underlying cryptographic device to be vulnerable to certain attacks. Although most of the DPA-resistant logic styles target an ASIC design process, there are a few attempts to apply them in an FPGA platform. This is due to the missing freedom in FPGA design tools required to deal with the aforementioned problems. Our contribution in this work is to provide solutions for both early propagation and imbalanced routings considering a modern Xilinx FPGA as the target platform. Foremost, based on the WDDL concept we design a new FPGA-based logic style without early propagation in both precharge and evaluation phases. Additionally, with respect to the limited routing resources within an FPGA we develop a customized router to nd the best appropriate dual-rail routes for a given dual-rail circuit. Based on practical experiments on a Virtex-5 FPGA our evaluations verify the efficiency of each of our proposed approaches. They significantly improve the resistance of the design compared to cases not benefiting from our schemes

    Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs

    Get PDF
    Device-specific physical characteristics provide the foundation for PUFs, a hardware primitive for secure storage of cryptographic keys. So far, they have been implemented by either directly evaluating a binary output or by mapping outputs from a higher-order alphabet to a fixed-length bit sequence. However, the latter causes a significant bias in the derived key when combined with an equidistant quantization. To overcome this limitation, we propose a variable-length bit mapping that reflects the properties of a Gray code in a different metric, namely the Levenshtein metric instead of the classical Hamming metric. Subsequent error-correction is therefore based on a custom insertion/deletion correcting code. This new approach effectively counteracts the bias in the derived key already at the input side. We present the concept for our scheme and demonstrate its feasibility based on an empirical PUF distribution. As a result, we increase the effective output bit length of the secret by over 40% compared to state-of-the-art approaches while at the same time obtaining additional advantages, e.g., an improved tamper-sensitivity. This opens up a new direction of Error-Correcting Codes (ECCs) for PUFs that output responses with symbols of higher-order output alphabets

    New Insights to Key Derivation for Tamper-Evident Physical Unclonable Functions

    No full text
    Several publications presented tamper-evident Physical Unclonable Functions (PUFs) for secure storage of cryptographic keys and tamper-detection. Unfortunately, previously published PUF-based key derivation schemes do not sufficiently take into account the specifics of the underlying application, i.e., an attacker that tampers with the physical parameters of the PUF outside of an idealized noise error model. This is a notable extension of existing schemes for PUF key derivation, as they are typically concerned about helper data leakage, i.e., by how much the PUF’s entropy is diminished when gaining access to its helper data.To address the specifics of tamper-evident PUFs, we formalize the aspect of tamper-sensitivity, thereby providing a new tool to rate by how much an attacker is allowed to tamper with the PUF. This complements existing criteria such as effective number of secret bits for entropy and failure rate for reliability. As a result, it provides a fair comparison among different schemes and independent of the PUF implementation, as its unit is based on the noise standard deviation of the underlying PUF measurement. To overcome the limitations of previous schemes, we then propose an Error-Correcting Code (ECC) based on the Lee metric, i.e., a distance metric well-suited to describe the distance between q-ary symbols as output from an equidistant quantization, i.e., a higher-order alphabet PUF. This novel approach is required, as the underlying symbols’ bits are not i.i.d. which hinders applying previous state-of-the-art approaches. We present the concept for our scheme and demonstrate its feasibility based on an empirical PUF distribution. The benefits of our approach are an increase by over 21% in effective secret bit compared to previous approaches based on equidistant quantization. At the same time, we improve tamper-sensitivity compared to an equiprobable quantization while ensuring similar reliability and entropy. Hence, this work opens up a new direction of how to interpret the PUF output and details a practically relevant scheme outperforming all previous constructions

    Secure Physical Enclosures from Covers with Tamper-Resistance

    No full text
    Ensuring physical security of multiple-chip embedded systems on a PCB is challenging, since the attacker can control the device in a hostile environment. To detect physical intruders as part of a layered approach to security, it is common to create a physical security boundary that is difficult to penetrate or remove, e.g., enclosures created from tamper-respondent envelopes or covers. Their physical integrity is usually checked by active sensing, i.e., a battery-backed circuit continuously monitors the enclosure. However, adoption is often hampered by the disadvantages of a battery and due to specialized equipment which is required to create the enclosure. In contrast, we present a batteryless tamper-resistant cover made from standard flexPCB technology, i.e., a commercially widespread, scalable, and proven technology. The cover comprises a fine mesh of electrodes and an evaluation unit underneath the cover checks their integrity by detecting short and open circuits. Additionally, it measures the capacitances between the electrodes of the mesh. Once its preliminary integrity is confirmed, a cryptographic key is derived from the capacitive measurements representing a PUF, to decrypt and authenticate sensitive data of the enclosed system. We demonstrate the feasibility of our concept, provide details on the layout, electrical properties of the cover, and explain the underlying security architecture. Practical results including statistics over a set of 115 flexPCB covers, physical attacks, and environmental testing support our design rationale. Hence, our work opens up a new direction of counteracting physical tampering without the need of batteries, while aiming at a physical security level comparable to FIPS 140-2 level 3

    <i>EPOXI</i>: comet 103P/Hartley 2 observations from a worldwide campaign

    Get PDF
    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production
    corecore